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ABSTRACT

An extension of the generalized scattering matrix
(GSM) technique is formulated to compute the GSM of
nonuniform quantum waveguide structures with two-dimen-
sional quantum confinement of electronic states. Low
temperature I-V characteristics for a double constriction are
presented, exhibiting a region of negative differential resis-
tance (NDR). A simple design procedure for increasing the
temperature range with achievable NDR is introduced.

I. INTRODUCTION

The well developed numerical microwave techniques
used in the analysis of guided-wave structures for microwave
circuits (e.g.,1) are routinely applied to guided-wave configu-
rations in other fields such as optical and acoustical wave-
guides. Over the past years, microwave techniques have also
been increasingly applied to semiconductor structures as in (2)
where simple transmission line techniques have been used to
evaluate the properties of general semiconductor superlattices.
Recently, a new class of semiconductor structures has
emerged in which two-dimensional quantum confinement of
electronic states is achieved (3). At low temperature, clec-
tronic transport in such quantum structures may be essentially
ballistic so that the wave-like behavior of electrons dominates.
Hence, the low-temperature electronic transport in these
quantum waveguide structures is in close analogy to the
propagation of electromagnetic waves in metallic waveguide
circuits. However, unlike metallic waveguides, the sidewalls
in quantum waveguides are defined by potential barriers
which can be controlled by an externally applied voltage as
shown in recent experiments on short split-gate field-effect
transistors (4,5). There, conductance plateaus and oscillations
(6) as a function of gate voltage have been observed.
Theoretical calculations assuming a uniform quantum wave-
guide section with infinite potential walls (hard walls) which
is connected to wide regions to model the coupling to the
external system, correlate to this observed behavior (e.g.,7,8).
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II. THEORETICAL FORMULATION

In this paper, an analysis procedure for nonuniform
quantum waveguide structures which may be realized in the
split-gate configuration is described. The nonuniform wave-
guide structure is first decomposed into uniform waveguide
sections and junctions. In the present work, it is assumed that
the electron motion in each uniform waveguide section is
ballistic, and that the electronic states are governed by the
time-independent Schridinger equation in the effective mass
approximation

2m
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with lateral confinement by infinite potential walls (hard
walls) (e.g.,3,8-11). Here, E represents the total electron
energy, V the potential energy, m" denotes the effective mass,
and % is the reduced Planck’s constant. Furthermore, the
wavefunction Y and its normal derivative are continuous
across the interface between two uniform waveguide sections.
The eigensolutions of (1) constitute the modes (energy
subbands) of the uniform quantum waveguide. They form a
complete infinite set of orthogonal functions, and hence, can
be used as a modal expansion of the wavefunction in the
uniform waveguide. For a uniform quantum waveguide of
width w, the wavefunction is expanded into an infinite series
of normal modes as

o0

m=1
with B, = ,/kg-ké—kf(m) , kom =TT (@2b)
and o, = 2w sin[k,(m)x] (20)

and properly truncated for numerical solutions. The quantity
Z,, is defined as the ratio of s}, and -idy;},/0z, and represents
the generalized characteristic wave impedance for modal
waves propagating in ihe positive z-direction.
Mode-matching methods (1,8,12) are then employed
to compute the generalized scattering matrices (GSM’s) (1) of
the junctions. The GSM of the composite quantum waveguide
structure may be obtained by combining the generalized
scattering parameters of the junctions and the uniform wave-
guide section via the GSM technique (1). In the GSM
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technique, however, the same number of modes are retained
in the waveguide section and in the two junctions it connects.
For an accurate computation of the GSM of a junction, a
significant number of evanescent modes may need to be
included, although most of these modes do not couple effec-
tively to the next junction due to the large attenuation of their
amplitudes. Therefore, either highly attenuated evanescent
modes may need to be included for an accurate character-
ization of the junctions leading to numerical instabilities in
form of ill-conditioned matrices, or the number of evanescent
modes is limited to only those that are effectively coupled
between the two junctions, thus impairing the accuracy of the
scattering parameters of the junctions. These drawbacks are
eliminated in the extended GSM technique introduced below
where the number of modes retained in the waveguide section
and the two junctions may be different. Consequently, the
GSM’s of the junctions can be determined to any desired
accuracy while assuring a numerically stable GSM for the
composite structure,

Figure 1 shows the configuration of two arbitrary
junctions (A and B) which are connected through a uniform
waveguide section (C). The modal amplitudes are expressed
by the column vectors @, & etc. The total number of modes
retained on each side of the junctions is grouped into the
number of modes K coupled between A and B, and the
remaining modes as indicated in Fig. 1.
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Fig. 1: Two arbitrary junctions (A and B) connected by a uniform
waveguide section (C).

In terms of the GSM of junction A, this partitioning rule is

expressed as
. -
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A corresponding partitioned GSM is obtained for junction B
and is given by (3) with superscript A replaced by B. The
uniform waveguide section C of length L can be characterized
by the diagonal matrix P with diagonal elements

m=1,23,.,K.

To obtain the GSM of the composite structure, the boundary
conditions for the amplitudes at the interfaces between A and
C as well as B and C (Fig. 1) are imposed while the incident
amplitudes for the uncoupled evanescent modes are set to
zero. After eliminating the mode amplitudes of the uniform
waveguide section, the generalized scattering parameters of
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the composite structure with amplitude vectors defined as

a': bt a’ b? )
a =\, b = Jde=], b, = 5
a, b, a, b,

are obtained as
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as well as S,, and S,, which are given by (6b) and (6a),
respectively, with superscripts A and B interchanged.

From the scattering parameters of the composite
structure, the total transmission coefficient 7, from propa-
gating mode # at the input to all M, propagating modes at the
output is found as

M’
Tn = Elsll(mrn)'z (7)
m=1
The total transmission T through a quantum waveguide
structure can be defined as the summation of T, over all
propagating modes at the input. For small bias voltages
(linear response regime), the total transmission evaluated at
the Fermi energy E, is equivalent to the normalized zero-
temperature conductance (7). A more general expression for
the current through a quantum waveguide structure as a
function of applied bias voltage V, is given as (13)
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where f{E) is the carrier distribution function, here assumed to

be a Fermi-Dirac function. Here, the effect of an applied bias

voltage is modeled as linear potential drops across the uniform

waveguide sections. In the numerical analysis, a stepped

guide model is used to approximate each linear potential drop.

III. COMPUTATIONAL RESULTS

The modal analysis method described above has been
applied to various nonuniform quantum waveguide structures
which may be realized in a split-gate GaAs/AlGaAs hetero-
junction configuration. Among them are single and double
bend structures (8) and the double constriction. The case of
the double constriction shown in the inset of Fig. 2(a) is of
special interest due to the analogy to evanescent mode filters
and to the resonant tunneling diode (RTD) which is finding
applications at millimeter and microwave frequencies. The
total transmission coefficient T for a biased double constric-
tion exhibits sharp resonant peaks similar to RTD’s (14) at
energies for which no waves can propagate in the two narrow
constrictions (Fig. 2(a)). The calculated I-V characteristics
shown in Fig, 2(b) for various temperatures exhibit a region
of negative differential resistance (NDR).



2.0

g ¢
omd
‘. =il
5 1.0
| 0.5
o
[
B
0.0 ™ — 14
0 5 10 15 20
Energy (meV)
(@)
] ¥
— 207 [w J
ﬁ { ‘bsoo 25 45 25 s00
~ 15 20 125+ 20
wd
q 4
g 10
&) 54
1
0 - T T L
0 5 10 15
Bias Voltage (mV)
(®)
Fig. 2: (a) Total transmission T as function of energy and different values

of bias voltage for the double constriction structure shown in the
inset (dimensions are in nm); (b) I-V characteristics at different
temperatures for the double constriction structure shown in the
inset; E~5meV.,

A simple design procedure for symmetric double
constriction structures has been developed to enhance the
temperature range with achievable NDR. If only the lowest-
order mode in the cavity region is considered, an expression
for the total transmission through a symmetric double con-
striction at zero bias voltage, similar to that for a one-dimen-
sional double potential barrier (15), can be found as
-1

4R2” sin?(BL + @) ®

T(E) =1+

where T, = 1-R, is the total transmission through a single
narrow constriction (barrier). The quantity ¢ is the phase
factor of the reflection coefficient for electrons in the cavity
facing the left or right narrow constriction. It can be accurate-
ly approximated by the phase ¢ of the reflection coefficient
for a single step discontinuity at the interfaces of the cavity
and the two narrow constrictions (Fig. 3).

483

Cr =lrl ei‘p

Fig. 3: Reflection coefficient r for the step discontinuity from the cavity
region to the narrow constrictions.

The resonance energy for which T=1 is given by the reso-
nance condition BL + ¢ = an (n=0,1,2,-), and can be deter-
mined graphically as shown in Fig. 4. There, BL and -¢ (to
approximate -@) are plotted as a function of energy for
various lengths L of the cavity and widths w of the two
narrow constrictions. Also evident in the figure is the cutoff
energy of the lowest-order mode in the two narrow constric-
tions as indicated by the sharp discontinuities in the (-¢)
curves.
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Fig. 4: Phase -¢ = -arg(r) (solid lines) and phase shift BL (dashed lines)

inside the cavity region.

In order to increase the temperature range with
achievable NDR, a large energy gap between the lowest-order
resonance and the cutoff energy in the narrow constriction as
well as the second-lowest resonance is needed. The length of
the two narrow constrictions has very little influence on the
position of the resonance, however, it controls the width of
the resonant peak through T, (the width of the peak decreases
with increasing length of the narrow constrictions). As a
compromise between a practical size of the width of the
resonance peak (large current) and a large temperature range
with achievable NDR, new dimensions for the double
constriction structure were chosen as indicated in Fig. 4 and
in the inset of Fig. 5. The predicted resonance energy
(16.02meV) is found to be very close to the actual resonance
(15.98meV) obtained from the transmission data. The
corresponding [-V curves with enhanced temperature range
with achievable NDR are shown in Fig. 5.
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Fig. 5: I-V characteristics at different temperatures for the improved

structure shown in the inset; E=10meV (dimensions are in nm).

It is obvious from Figs. (2a,b) that the total transmis-
sion evaluated at the current peak may be considerably less
than unity. In order to maximizes the total transmission near
the current peak, the simple design procedure for symmetric
double constrictions presented above has been extended to
asymmetric double constriction structures with different
lengths of the left and right narrow constriction. Results for
the I-V characteristics, however, indicate that an increased
temperature range with achievable NDR is not necessarily
obtained.

IV. SUMMARY

An extension of the generalized scattering matrix
technique to decouple some of the evanescent modes has been
described. The method has been applied to analyze non-
uniform quantum waveguide structures. The calculated I-V
characteristics for a double constriction structure exhibit a
region of NDR at low temperature. A simple design proce-
dure to enhance the temperature range with achievable NDR
has been presented. The method described here should be
useful in the analysis of other non-uniform quantum wave-
guide structures exhibiting new quantum interference effects,
as well as to guided-wave structures in microwave integrated
circuits (MIC’s) and optical integrated circuits (OIC’s).
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