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ABSTRACT

An extension of the generalized scattering matrix

(GSM) technique is formulated to compute the GSM of

nonuniform quantum waveguide structures with two-dimen-

sional quantum confinement of electronic states. Low

temperature Z-V characteristics for a double constriction are

presented, exhibiting a region of negative differential resis-

tance (NDR). A simple design procedure for increasing the

temperature range with achievable NDR is introduced.

I. INTRODUCIION

The well developed numerical microwave techniques

used in the analysis of guided-wave structures for microwave

circuits (e.g., 1) are routinely applied to guided-wave configu-

rations in other fields such as optical and acoustical wave-

guides. Over the past years, microwave techniques have also

been increasingly applied to semiconductor shuctures as in (2)

where simple transmission line techniques have been used to

evaluate the properties of general semiconductor superlattices.

Recently, a new class of semiconductor structures has

emerged in which two-dimensional quantum confinement of

electronic states is achieved (3). At low temperature, elec-

tronic transport in such quantum structures maybe essentially

ballistic so that the wave-like behavior of electrons dominates.

Hence, the low-temperature electronic transport in these

quantum waveguide structures is in close analogy to the

propagation of electromagnetic waves in metallic waveguide

circuits. However, unlie metallic waveguides, the sidewalls

in quantum waveguides are defined by potential barriers

which can be controlled by an externally applied voltage as

shown in recent experiments on short split-gate field-effect

transistors (4,5). There, conductance plateaus and oscillations

(6) as a function of gate voltage have been observed.

Theoretical calculations assuming a uniform quantum wave-

guide section with infinite potential walls (hard walls) which

is connected to wide regions to model the coupling to the

external system, correlate to thk observed behavior (e.g.,7,8).
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II. THEORETICAL FORMULATION

In this paper, an analysis procedure for nonuniform

quantum waveguide structures which may be realized in the

split-gate configuration is described. The nonuniform wave-

guide structure is fist decomposed into uniform waveguide

sections and junctions. In the present work, it is assumed that

the electron motion in each uniform waveguide section is

ballistic, and that the electronic states arc governed by the

time-independent Schrodinger equation in the effective mass

approximation

my+ 2&.v)ly = (V’+k++l = o (1)

with lateral confinement by infinite potential walls (hard

walls) (e.g.,3,8-l 1). Here, E represents the total electron

energy, V the potential energy, m* denotes the effective mass,

and h is the reduced Planck’s constant. Furthermore, the

wavefunction y and its normal derivative are continuous

across the interface between two uniform waveguide sections.

The eigensolutions of (1) constitute the modes (energy

subbands) of the uniform quantum waveguide. They form a

complete infinite set of orthogonal functions, and hence, can

be used as a modal expansion of the wavefunction in the

uniform waveguide. For a uniform quantum waveguide of

width w, the wavefunction is expanded into an infinite series

of normal modes as

and $ ~(x) = ~sin[kt(m)x] (2C)

and properly truncated for numerical solutions. The quantity

Z. is defined as the ratio of ~~ and -idy.$jaz, and represents

the generalized characteristic wave impedance for modal

waves propagating in the positive z-direction.

Mode-matching methods (1,8,12) are then employed

to compute the generalized scattering matrices (GSM’S) (1) of

the junctions. The GSM of the composite quantum waveguide

snucture may be obtained by combining the generalized

scattering parameters of the junctions and the uniform wave-

guide section via the GSM technique (l). In the GSM
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technique, however, the same number of modes are retained

in the waveguide section and in the two junctions it connects.

For an accurate computation of the GSM of a junction, a

signitlcant number of evanescent modes may need to be

included, although most of these modes do not couple effec-

tively to the next junction due to the large attenuation of their

amplitudes. Therefore, either highly attenuated evanescent

modes may need to be included for an accurate character-

ization of the junctions leading to numerical instabilities in

form of ill-conditioned matrices, or the number of evanescent

modes is limited to only those that are effectively coupled

between the two junctions, thus impairing the accuracy of the

scattering parameters of the junctions. These drawbacks are

eliminated in the extended GSM technique introduced below

where the number of modes retained in the waveguide section

and the two junctions may be different. Consequently, the

GSM’S of the junctions can be determined to any desired

accuracy while assuring a numerically stable GSM for the

composite structure.

Figure 1 shows the configuration of two arbitrary

junctions (A and B) which are connected through a uniform

waveguide section (C). The modal amplitudes are expressed

by the column vectors ~, ~ etc. The total number of modes

retained on each side of the junctions is grouped into the

number of modes K coupled between A and B, and the

remaining modes as indicated in Fig. 1.

Fig. 1: Two arbitrary junctions (A and B) connezted by a uniform
waveguide section (C).

In terms of the GSM of junction A, thk partitioning role is

expressed as

[

s:
.

SA21

(3)

A corresponding partitioned GSM is obtained for junction B

and is given by (3) with superscript A replaced by B. The

uniform waveguide section C of length L can be characterized
by the diagonal matrix P with diagonal elements

P(m,m) = eip:L , m * 1,2,3,...,K.
(4)

To obtain the GSM of the composite structure, the boundary

conditions for the amplitudes at the interfaces between A and

C as well as B and C (Fig. 1) are imposed while the incident

amplitudes for the uncoupled evanescent modes are set to

zero. After eliminating the mode amplitudes of the uniform

waveguide section, the generalized scattering parameters of

the composite structure with amplitude vectors defined as

‘=EI’=IJ=121’2“)
are obtained as

[ 1[s: s: JS~P(Z - S~PS~p)ls~p [s!. ‘fb] (6a)
s,, = +

S;e S;b S:P(Z - S:PS:P)’S:P [s!= s:

[ J

SQ(Z - Sfy$y’)’ [s: s;]
S12=

S:CP(Z- S:PS:P)] [Sj s;

(6b)

as well as Szl and S22which are given by (6b) and (6a),

respectively, with superscripts A and B interchanged.

From the scattering parameters of the composite

structure, the total transmission coefficient Tn from propa-

gating mode n at the input to all M, propagating modes at the

output is found as

Tn = ~ I$l(m,n)l’ (7)

m= 1
The total transmission T through a quantum waveguide

structure can be defined as the summation of Tn over all

propagating modes at the input. For small bias voltages

(linear response regime), the total transmission evaluated at

the Fermi energy E~ is equivalent to the normalized zero-

temperature conductance (7). A more general expression for

the current through a quantum waveguide structure as a

function of applied bias voltage Vb is given as (13)

~ ][~(@-~(E+evb)]T(E,V~)dE (8)Z(vb)= 2f?-
0

wheref(E) is the carrier distribution function, here assumed to

be a Fermi-Dirac function. Here, the effect of an applied bias

voltage is modeled as linear potential drops across the uniform

waveguide sections. In the numerical analysis, a stepped

guide model is used to approximate each linear potential drop.

III. COMPUTATIONAL RESULTS

The modal analysis method described above has been

applied to various nonuniform quantum waveguide structures

which may be realized in a split-gate GaAs/AIGaAs hetero-

junction configuration. Among them are single and double

bend structures (8) and the double constriction. The case of

the double constriction shown in the inset of Fig. 2(a) is of

special interest due to the analogy to evanescent mode filters

and to the resonant tunneling diode (RTD) which is finding

applications at millimeter and microwave frequencies. The

total transmission coefficient T for a biased double constric-

tion exhibits sharp resonant peaks similar to RTD’s (14) at

energies for which no waves can propagate in the two narrow

constrictions (Fig. 2(a)). The calculated I-V characteristics

shown in Fig. 2(b) for various temperatures exhibit a region

of negative differential resistance (NDR).
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(a) Total transmission Tas function of energy and different values
of bias voltage for the double constriction stnrcture shown in the
inset (dimensions are in nm~ (b) 1-V characteristics at different
temperatures for the double constriction structure shown in the
inset E~5meV,

A simple design procedure for symmetric double

constriction structures has been developed to enhance the

temperature range with achievable NDR. If only the lowest-

order mode in the cavity region is considered, an expression

for the total transmission through a symmetric double con-

striction at zero bias voltage, similar to that for a one-dimen-

sional double potential barrier (15), can be found as

[

4Rb

1

-1

Z-(E) = 1 + —sin2(~L+tp) (9)
T;

where Tb = l-R~ is the total transmission through a single

narrow constriction (barrier). The quantity rp is the phase

factor of the reflection coefficient for electrons in the cavity

facing the left or right narrow constriction. It can be accurate-

ly approximated by the phase $ of the reflection coefficient

for a single step discontinuity at the interfaces of the cavity

and the two narrow constrictions (Fig. 3).

Fig. 3: Reflection coefficient r for the step discontinuity from the cavity

region to the narrow constrictions.

The resonance energy for which T=l is given by the reso-

nance condition @C.+ tp = nx (n=0,1,2,...), and can be deter-

mined graphically as shown in Fig. 4. There, ~L and -$ (to

approximate -tp) are plotted as a function of energy for

various lengths L of the cavity and widths w of the two

narrow constrictions. Also evident in the figure is the cutoff

energy of the lowest-order mode in the two narrow constric-

tions as indicated by the sharp discontinuities in the (-~)

curves.
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t3g. 4: Phase -$= -rrrg(r) (sotid tines) and phase shift ~L. (dashedlimes)
inside the cavity region.

In order to increase the temperature range with

achievable NDR, a large energy gap between the lowest-order

resonance and the cutoff energy in the narrow constriction as

well as the second-lowest resonance is needed. The length of

the two narrow constrictions has very little influence on the

position of the resonance, however, it controls the width of

the resonant peak through T6 (the width of the peak decreases

with increasing length of the narrow constrictions). As a

compromise between a practical size of the width of the

resonance peak (large current) and a large temperature range

with achievable NDR, new dimensions for the double

constriction structure ‘were chosen as indicated in Fig. 4 and

in the inset of Fig. 5. The prdlcted resonance energy

(16.02meV) is found to be very close to the actual resonance

(15.98meV) obtained from the transmission data. The

corresponding I-V curves with enhanced temperature range

with achievable NDR are shown in Fig. 5.
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Fig.5: I-V characteristics at different temperatures for the improved

structare shown in the inset EilOmeV (dimensions are in rim).

It is obvious from Figs. (2a,b) that the total transmis-

sion evaluated at the current peak may be considerably less

than unity. In order to maximizes the total transmission near

the current peak, the simple design procedure for symmetric

double constrictions presented above has been extended to

asymmetric double constriction structures with different

lengths of the left and right narrow constriction. Results for

the I-V characteristics, however, indicate that an increased

temperature range with achievable NDR is not necessmily

obtained.

IV. SUMMARY

An extension of the generalized scattering matrix

technique to decouple some of the evanescent modes has been

described, The method has been applied to analyze non-

uniform quantum waveguide structures. The calculated 1-V

characteristics for a double constriction structure exhibit a

region of NDR at low temperature. A simple design proce-

dure to enhance the temperature range with achievable NDR
has been presented. The method described here should be

useful in the analysis of other non-uniform quantum wave-

guide structures exhibiting new quantum interference effects,

as well as to guided-wave structures in microwave integrated

circuits (MIC’s) and optical integrated circuits (OIC’S).
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